Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
World J Virol ; 12(1): 53-67, 2023 Jan 25.
Article in English | MEDLINE | ID: covidwho-2234164

ABSTRACT

BACKGROUND: Empirical use of potentially hepatotoxic drugs in the management of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is considered as one of the major etiopathogenetic factors for liver injury. Recent evidence has shown that an underlying genetic factor may also occur. Hence, it is important to understand the host genetics and iatrogenic-based mechanisms for liver dysfunction to make timely remedial measures. AIM: To investigate drug-induced and genetic perspectives for the development of coronavirus disease 2019 (COVID-19)-related liver injury. METHODS: Reference Citation Analysis, PubMed, Google Scholar and China National Knowledge Infrastructure were searched by employing the relevant MeSH keywords and pertaining data of the duration, site and type of study, sample size with any subgroups and drug-induced liver injury outcome. Genetic aspects were extracted from the most current pertinent publications. RESULTS: In all studies, the hepatic specific aminotransferase and other biochemical indices were more than their prescribed upper normal limit in COVID-19 patients and were found to be significantly related with the gravity of disease, hospital stay, number of COVID-19 treatment drugs and worse clinical outcomes. In addition, membrane bound O-acyltransferase domain containing 7 rs641738, rs11385942 G>GA at chromosome 3 gene cluster and rs657152 C>A at ABO blood locus was significantly associated with severity of livery injury in admitted SARS-CoV-2 patients. CONCLUSION: Hepatic dysfunction in SARS-CoV-2 infection could be the result of individual drugs or due to drug-drug interactions and may be in a subset of patients with a genetic propensity. Thus, serial estimation of hepatic indices in hospitalized SARS-CoV-2 patients should be done to make timely corrective actions for iatrogenic causes to avoid clinical deterioration. Additional molecular and translational research is warranted in this regard.

2.
Indian J Clin Biochem ; 37(2): 131-138, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1465913

ABSTRACT

The coronavirus disease 2019 is a highly contagious viral infection caused by SARS-CoV-2 virus, member of coronaviridae family. It causes life threatening complications due to complexity and rapid onset course of the disease. Early identification of high-risk patients who require close monitoring and aggressive treatment remains challengeable till date. Novel biomarkers which help to identify high risk patients at the early stage is high priority. Objective of this review to find utility of P-SEP, sTREM-1 and suPAR for diagnosis, risk stratification and prognosis of SARS-CoV-2 infected cases. Soluble receptors like, P-SEP, sTREM-1 and suPAR have been involved in immune regulation in SARS-CoV-2 infection and elevate more in severe cases. A comprehensive research of databases like PubMed, EMBASE, CNKI and Web of Science was performed for relevant studies. A total of nine out of fifteen research literature in initial screening were included for this review. Interestingly all studies have reported high levels of P-SEP, sTREM-1 and suPAR in SARS-CoV-2 infected cases and the biomarkers positively correlated with severity of infection. This implies that P-SEP, sTREM-1 and suPAR can be implemented as surrogate marker in blood profile for early diagnosis, risk stratification and prognosis in SARS-CoV-2 for better management in Indian population at the current situation.

3.
Indian J Clin Biochem ; 36(4): 451-458, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1286196

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the etiological agent of coronavirus disease-2019 (COVID-19), is a highly contagious pathogenic coronavirus to emerge and spread in human populations. Although substantial exertions have been laid to avert spread of COVID-19 by therapeutic and preventive countermeasures, but emergence of SARS-CoV-2 variants as a result of mutations make the infection more ominous. New viral confers a higher nasopharyngeal viral load, increased viral transmissibility, higher infectiousness, immune escape, increased resistance to monoclonal/polyclonal antibodies from convalescence sera/vaccine, and an enhanced virulence. Thus, it is pertinent to monitor evolving mutations and genetic diversity of SARS-CoV-2 as it is decisive for understanding the viral variants. In this review we provide an overview of colloquial nomenclature and the genetic characteristics of different SARS-CoV-2 variants in the context of mutational changes of the circulating strains, transmissibility potential, virulence and infectivity.

SELECTION OF CITATIONS
SEARCH DETAIL